Learn how to use the Linkup API with LangChain.
👀 Overview
Linkup can be used with LangChain as a Retriever. This tutorial shows to setup a basic LangChain pipeline leveraging Linkup as a Retriever to get contextual information from the internet.
📦 Installation
Install the LangChain integration using pip
:
pip install langchain-linkup
🛠️ Usage
Setting Up Your Environment
-
🔑 Obtain an API Key:
Sign up on Linkup to get your API key.
-
⚙️ Set-up the API Key:
Option 1: Export the
LINKUP_API_KEY
environment variable in your shell before using the Linkup
LangChain component.export LINKUP_API_KEY='YOUR_LINKUP_API_KEY'
Option 2: Set the
LINKUP_API_KEY
environment variable directly within Python, using for
instanceos.environ
or python-dotenv with a
.env
file (python-dotenv
needs to be installed separately in this case), before creating the
Linkup LangChain component.import os from langchain_linkup import LinkupRetriever os.environ["LINKUP_API_KEY"] = "YOUR_LINKUP_API_KEY" # or dotenv.load_dotenv() retriever = LinkupRetriever(...) ...
Option 3: Pass the Linkup API key to the Linkup LangChain component when creating it.
from langchain_linkup import LinkupRetriever retriever = LinkupRetriever(api_key="YOUR_LINKUP_API_KEY", ...) ...
Use the Linkup Retriever
You can then use the Linkup retriever to get information on your question from the web.
documents = retriever.invoke(input="<YOUR_QUESTION_HERE>")
print(documents)
📋 Example
Linkup search queries can be used with one of two very different modes:
- with
depth="standard"
, the search will be straightforward and fast, suited for relatively simple
queries (e.g. "What's the weather in Paris today?") - with
depth="deep"
, the search will use an agentic workflow, which makes it in general slower,
but it will be able to solve more complex queries (e.g. "What is the company profile of LangChain
accross the last few years, and how does it compare to its concurrents?")
🔍 Retriever (Easy)
from langchain_linkup import LinkupRetriever
import os
os.environ["LINKUP_API_KEY"] = "YOUR_LINKUP_API_KEY"
retriever = LinkupRetriever(
depth="deep", # "standard" or "deep"
)
# Perform a search query
documents = retriever.invoke(input="What is Linkup, the new French AI startup?")
print(documents)
🤖 RAG with the OpenAI LLM (Intermediate)
This is a RAG example using the Linkup API and LangChain's LCEL (LangChain Expression Language). This RAG uses OpenAI.
Additionally, you need an API key for Linkup, and another one for OpenAI (for the final generation),
which you can set manually as the LINKUP_API_KEY and OPENAI_API_KEY environment variables, or you
can duplicate the file .env.example
in a .env
file, fill the missing values, and the environment
variables will be automatically loaded from it, or you can replace the corresponding variables
below.
#pip install langchain-openai
from typing import Any, Literal
from dotenv import load_dotenv
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_linkup import LinkupRetriever
os.environ["LINKUP_API_KEY"] = "YOUR_LINKUP_API_KEY"
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
# You can change the RAG query and parameters here. If you prefer not to use environment variables
# you can fill them here.
query: str = "What is Linkup, the new French AI startup?"
linkup_depth: Literal["standard", "deep"] = "standard"
linkup_api_key = None
open_ai_model: str = "gpt-4o-mini"
openai_api_key = None
load_dotenv() # Load environment variables from .env file if there is one
retriever = LinkupRetriever(linkup_api_key=linkup_api_key, depth=linkup_depth)
def format_retrieved_documents(docs: list[Document]) -> str:
"""Format the documents retrieved by the Linkup API as a text."""
return "\n\n".join(
[
f"{document.metadata['name']} ({document.metadata['url']}):\n{document.page_content}"
for document in docs
]
)
def inspect_context(state: dict[str, Any]) -> dict[str, Any]:
"""Print the context retrieved by the retriever."""
print(f"Context: {state['context']}\n\n")
return state
generation_prompt_template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(generation_prompt_template)
model = ChatOpenAI(model=open_ai_model, api_key=openai_api_key)
chain: Runnable[Any, str] = (
{"context": retriever | format_retrieved_documents, "question": RunnablePassthrough()}
| RunnableLambda(inspect_context)
| prompt
| model
| StrOutputParser()
)
response = chain.invoke(input=query)
print(f"Response: {response}")